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Abslract-The elastostatic problem for a relatively thin-walled spherical cap containing a through crack is
considered. The problem is formulated for a specially ortbotropic material within the confines of a
linearized, shallow shell theory. The theory used is equivalent to Reissner's theory of flat plates and hence
permits the comideration of all five physical conditions on the shell boundaries separately. The solution of
the problem is reduced to that of a pair of singular integral equations and the asymptotic stress state around
the crack tips is investigated. The numerical solution of the problem is given for an isotropic shell and for
two specially ortbotropic shells. The results indicate that the material orthotropy as well as the shell
curvature and thickness may have a considerable effect on the stress intensity factors at the crack tips.

I. INTRODUCTION
In structures consisting of relatively thin-walled curved sheets and containing a through crack
the stress intensity factors calculated under the assumption of the cracked sheet being locally
flat and that calculated from a bending theory of shells may difter quite considerably. This
curvature effect has been amply demonstrated in a number of studies on a variety of shell and
crack geometries (see, e.g. [1-4] for a crack in cylindrical shells and [3] in a spherical shell for
typical results. Also, see [5] for typical asymptotic results in shells with a quadric surface and
[6] for review and references). In these studies the so-called classical shallow shell theory is
used to formulate the crack problem. The theory permits the use of only four conditions on the
shell boundary. Hence, on the crack surface instead of prescribins twisting moment M". and
transverse shear Vn separately, they are combined as the Kirchhoff effective transverse shear
Vn+ aMn.1as and are given as a single boundary condition. The consequence of using such a
first order theory which does not permit the satisfaction of all physical boundary conditions is
well-known in the analogous plate bending problem. In using the classical plate bending theory
and prescribing the normal component of the bending moment Mn• and the effective transverse
shear Vn+ aMn.1as on the crack boundary, even though at the crack tips the bendina moments
appear to have the expected square-root singularity, the angular distnDution of the bending
stresses around the crack tips is found to be different from that of membrane stresses resulting
from the in-plane loading of the plate and the results imply that the transverse shear Vn has a
singularity of the order ,-312, , being the distance from the crack tip (see, e.g. [7]). On the other
hand, as shown in [8-10], if a more refined theory such as that of Reissner[ll] is used which
permits the satisfaction of all physical conditions in Mo ' M•• and V. on the crack surface
separately, it may be shown that the asymptotic behaviors of membrane and bending stress
resultants around the crack tips are indeed identical and furthermore the transverse shear stress
has no singularity.

The results found for the shells have been quite similar to that of ftat plates. In limit when
the curvature goes to zero the classical shell equations uncouple and give the two biharmonic
equations for in-plane loading and bending of flat plates. Hence, as expected, the asymptotic
results obtained from the classical shell theory show that the angular distributions of membrane
and bending stress resultants are identical to those obtained for respectively the extension and
the bending of fiat plates. It is, therefore, apparent that as in the ftat plate problem this
inconsistency in the stress distribution near the crack surface arising from the use of the
classical shell theory can be removed if a more refined shell theory is used to formulate the
problem. Such a linearized shallow shell theory [12] is used in [13, 14] to solve the problems of a
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cylindrical shell containing an axial and a circumferential crack, respectively. A similar theory
is used in [15] to solve the problem of cracked spherical shell. t These solutions show that by
using an appropriate shell theory which is consistent with the number of independent physical
boundary conditions it is possible to obtain identical asymptotic distributions for bending and
membrane stress resultants.

In this paper the problem of a shallow spherical cap containing a through crack is
reconsidered. The problem is formulated by using the theory described in [12]. The solution is
given for specially orthotropic as well as isotropic shells.

2. BASIC FORMULATION

Referrilll to Fig. 1, let Nij, Mij and Vi (i, j = 1, 2) be respectively membrane, moment, and
transverse shear resultants in an arbitrary shallow shell. Under the assumptions generally
associated with shallow shells the equilibrium equations may be expressed ast[12]

NIj,j=O, (2.1)

(2.2)

12

M,jj- Vi =0, (i =1,2; j =1,2) (2.3)

.!....L
a CTm

-4

Fig, I. The out-of-plane crack surface displacement in an isotropic spherical shell (Nil ;o! O. Mil = O. a/h = 5.
A~=2.,,=1/3),

tThe .difference betwoen these two theories is that the terms ";1R in the expressions of transverse shear strains and
V,IR in the membrane equilibrium equations are retained in [15] and are neglected in [13. 14]. However. since the results
given in [15] and the isotropic shell results given in this paper are nearly identical. for the type of problems under consideration
keeping these additional terms does not seem to be necessary.

Un this ~ection the summation convention and the indicia! notation are used for conciseness.
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where q is the surface loading and Z(X.. X2) gives the perpendicular distance of the points on
the middle surface of the shell to the tangent plane described by the rectanJUlar axes X.. X2•

Let Vj , Wand 13i, (i =1,2) be respectively the Xi and the X3-components of the displacement
and the angles of rotation of the normal to the shell surface. Since the constitutive equations
relating the stress resultants N jj , Mij and Vi and the "displacement" quantities V" 13i and W
involve first order differential operators. it is clear that expressed in terms of the five
displacement quantities eqns (2.lH2.3) would give a system of five second order differential
equations. Thus. prescribing a set of five boundary conditions in terms of V,. 13i. W and their
first derivatives the problem becomes a well-posed problem.

Let F be the stress function defined by

(i.j = 1.2) (2.4)

where elk is the permutation symbol.t Substituting from (2.4) it is seen that (2.1) is satisfied.
Consider now the following stress-displacement relations

(i,j =1.2) (2.5)

where h is the shell thickness. Substituting from (2.4) and eliminating VI and V2, (2.5) becomes

(2.6)

A similar complicated differential equation is obtained from (2.2). For the general anisotropic
material assumed in (2.5) even for very simple shell geometries these differential equations do
not seem to be analytically tractable. However. as shown in [6], if one assumes the material to
be specially orthotropic the related differential operators can be factorized and the problem
becomes tractable. Writing the differential equations for an orthotropic material with constants
E.. v.. E2• V2 and 0 12• it can be shown that[6] the condition for factorization is

(2.7)

The material satisfying (2.7) is said to be specially orthotropic. Defining

(2.8)

the relations between stress and displacement quantities in the shell may be expressed as

(2.9)

(2.10)

VI-=W1+QIchB . ~.
(2.11)

where bending stresses are assumed to vary linearly in thickness direction and B is the eftective
shear modulus[ll].
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Using the relations (2.9)-(2.11), the normalized quantities defined in Appendix A, and the
curvatures defined by

(2.12)

the diferential eqns (2.6), (2.2) and (2.3) become

(I -VhQ 8w= 1+1'l-(~_~).
I( lt1y + ay I( 2 aX ay ax'

(2.13)

(2.14)

(2.15)

(2.16)

The normalizing constant a used in Appendix A is an additional length parameter in the shell
which. in crack problems, is usually taken to be the half crack length. Defining the functions

o.(x y)=~-~, oy ax'

eqns (2.15)-(2.16) may be replaced by the following somewhat simpler equations[14]

I(V2
", - '" - w = 0,

(2.17)

(2.18)

(2.19)

(2.20)

1 SPHERICAL SHELL

Consider a specially orthotropic spherical shell which contains a meridional crack of length
2a along the X2 axis. Thus, "12 = 0 and. because of orthotropy, AI yt. "2 (see Appendix A). Since
we are interested in the stress perturbation problem in which crack surface tractions are the
only extemalloads, without any loss in generality we may also assume that q = O. Defining the
operator

(3.1)

from (2.13) and (2.14) we obtain

Let the solution of (3.2) be of the form

1 foat/J(x, y) = -2 . g(x. a) e-,ya da.
1T _'"

(3.2)

(3.3)
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From (3.2) and (3.3) it may be shown that the unknown function g vanishing at x =:; co may be
expressed as

g(x,a) =

"L Rj(a) emf",
1
a
L Rj(a) emf",

5

x>O

x<O
(3.4)

where Rj , (j =1, ... , 8) are unknown and m..... , rna are the roots of the following charac
teristic equation

m 2 =p+a2
,

p"- KA2"p3 + (2KA 1
2Ala2- 2d2"a2+ A2")p2

+ (2KA?Ala2- KA2"a2- KA,"a2+ 2Al-2A,2'\i>a2p +(Ai- ,\,'ia" =0 (3.5)

satisfying

mj+" =-mj, j =1, ... ,4. (3.6)

Assuming the solution

w(x, y) =-2
1 J" f(x, a) e-iJ/O da,
1r _"

from (2.13) and (3.4) it may be shown that

f(x, a)=

Similarly by assuming that

1 f" .O(x, y) = -2 h(x, a) e-'J/O da,
1r _"

1 f" .t/1(x, y) =-2 8(x, a) e-'J/O da,
1r _"

from (2.20) and (2.19) it may be shown that

8(x, a) =

where

2 ]1/2'J =-'2= -[a
2+ .K(1- v)

(3.7)

(3.8)

(3.9)

(3.10)

(3.11)

(3.12)

(3.13)
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The problem is thus reduced to the determination of unknown functions Rf, ... ,Rs, Al and A2

which may be done by using the appropriate boundary conditions. In the spherical shell loaded
symmetrically with respect to the plane of the crack (i.e. x =°plane) stress and moment
resultants satisfy the following symmetry conditions:

M;u(x, y) =MxA-x, y), Mxy(x, y) =-Mxy(-x, y),

VAx, y) =- VA-x, y). (3.14)

Since (3.14) is valid for all x and y, in solving the problem it is sufficient to consider one half of
the medium for which x > O. Thus, there are only five unknowDS R I, •.• , R. and A I which may
be determined by usina five boundary conditions prescribed at x =+0.

Let the resultants Nxy, Mxy and Vx be zero on the crack surfaces. Then, because of assumed
symmetry

Nxy(O, y) =0, Mxy(O, y) =0, VAO, y) =0, -00< Y<00. (3.15)

Equations (3.15) may be used to eliminate three of the five unknown funetions Rio ... ,R. and
AI' ne·re'Rllieins,twoare detunrined..by usiB8 the folJowing·mixed,houncIery conditions:

lim N;u(x, y) = FI(y), -Ve <y <Ve, (3.16)
x-+o

lim M;u(x, y) = Fiy), -Ve < y<Ve, (3.17)
x-+o

u(O, y) =0, Ve < Iyl <00, (3.18)

I3x(O, y) = 0, Vc < Iyl <00, (3.19)

where FI and F2 are known functions and e = (E"E2)1/· (see AppeDdix A).
UsiDl (3.3), (3.4) and (3.7)-(3.12), from the basic expressions given in the previous section

the relevant components of the stress and moment resultants for x > 0 may be obtained as

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)
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Even though the mixed boundary conditio.ns (3.16)-(3. 19) would give a system of dual
integral equations to determine the remaining two unknown functions, the problem may be
reduced directly to a pair of integral equations by defining the fonowing two new unknown
functions:

a
oy u(+O, y):= Ot(Y), (3.25)

Again, using the solution obtained in this section and the basic expressions given in the
previous section. and observing that

a2 a3
. >..l- aiY' u(+0, y) == - a? 4>(+0. y) +A'fax w(+0. y).

it may be shown that

. f.... R( ) 2__ 2_' .. ,a~~ ~

Oz(Y) - "2 a L ( 1)('\ r 2 A 2 2) e da11' -co I KPi - 2 m, - I a

- K(l - v) J f"" 2A ( ) -I,.. d
2 2 a I a e a.

1'1 -oc

(3.26)

(3.27)

Thus, inverting (3.26), (3.27) and (3.21), (3.23) and (3.24) after substitutina into (3.1S), and using
(3.18) and (3.19) the foUowingsystem of algebraic equations is obtained:

.~ R,(a)(A·ip,'Zm,- A'J."ml +At"a2ml) -iaft(a),
"l" ).}ml- A}a'2.

~ R/(a)","m, i(l- V)K 2 :h
"l"(KPf-l)(A,,:tml-A.'2.a~= 2aA2 (rt +« jf,.(<<),

~ (KPi - fk~~~)'~ At2(2) = i(lii v) a/,,(a),

where

(3.28)

(3.29)

(3.30)

(3.31)

(3.32)

(Ie =1. 2). (3.33)

Equations (3.29)-(3.32) may be solved giving Rh ••• , .R. in terms of /1 and 12 as follows:

where QJ and Nj• (j == I, ... ,4) are known functions.

(3.34)

4. THE INTEGRAL EQUATIONS

The analysis given in the previous section indicates that determination of the functions O.
and O2 would complete the solution of the problem. These fUDCtions are detenniDed by usiD&
the boundary conditions (3.16) and (3.17). Thus, by substituting from (3.28), (3.33), (3.34), (3.20)
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and (3.22) into (3.16) and (3.17) one obtains a system of integral equations of the following
form:

k=I,2, -Vc<y<Vc. (4.1)

(4.3)

The functions Kkl(a. x) are bounded everywhere in -00 < a < 00 and contain exponential
damping terms of the form exp (mjX), exp (rlx), Re (mi) < 0, Re (rl) < O. Since mil' .. ,m4 are
not explicitly known functions of a, one needs to obtain asymptotic expressions for ml as well
as other terms in Kkl for large values of laI in order to examine the singular behavior of the
kernels in (4.1). Thus, from the characteristic equations (3.5) and (3.13) it can be shown that for
large values of la Iwe have

ml(a)=-lal(I+~-~+"} j=I, ... ,4, (4.2)

rl(a) =-Ial(1+ K(I ~ lI)a2 ..)

where the roots PI(a) are bounded for all values of a. The asymptotic values of Kkl (k, j = 1,2)
for large lal may then be obtained by using (4.2) and (4.3). Adding and subtracting these values
to and from Ktj in (4.1) one may easily SQPal&te the domiDantpart .of the kemels. After carrying
out this somewhat lengthy but straightforward analysis the integral equations and the kernels
are found to be

-Vc<y<Vc,

-Vc<y<Vc,l ye 0 (t) lye 2
-t_I- dt + I kll(y, t)G1(t) dt =21TF,(y),

-Ye - Y -Ye I

1 11
2 Jve O~t) lye 2 h-7r -tdt + I k21(y, t)G1(t)dt = 217' - F~y),

1\ -Ye - Y -Ye I a

kll(y, t) =r[2*a
2
QI(a) - I] sin a(t - y) da,

L
'" 4

kdY, t) = 2a 2 I N1(a) sin a(t - y) da,
o I

21'" 4 pl(ml- va2)Qj(a) .
k2,(y,t)=--;1 I( I)(A 2 2 A 2 ~slDa(t-Y)da,

1\ 0 1 KPI - 2 ml - 1 a

_ 2 i'" [ 2 4 pl(ml- va 2
)N;(a)

k~y, t) - - A4 0 A ~ f«PI - l)(AiM'l- A1
2a 2)

- K(I- 1I)2arl +(1-112)/2] sin a(t - y) da

(4.4)

(4.5)

(4.6)

(4.7)

(4.8)

(4.9)

where the kernels kij(y, t), (i,j = 1,2) are bounded in the interval -Vc s(y. t) sVc.
The index of the singular integral eqns (4.4) and (4.5) is +I. Consequently, the general

solution of the system wiD contain two arbitrary constants{16]. The two additional conditions
necessary to detennine tbese COQItants are obtained from the boundary conditions (3.18) and
(3.19) and the definition of O. and O2 as given by (3.25). From these equations it follows that for
u and 13x to be single-valued 0 1 and O2 must satisfy the following conditions:

l
Ye

OJ(t) dt =O.
-Ye

(j = 1,2). (4.10)

For the convenience of solving the integral equations (4.4) and (4.5) numerically, following
normalized quantities are defined:

T=tIVc. T/=yIVc. ~=x/Vc, H,(.,.)=O,(VC'T), H~T)=O~VC'T). (4.11)
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The eqns (4.4), (4.5) and (4.10) would then become

915

(4.13)

(4.14)

5. CRACK SURFACE DISPLACEMENTS

The analysis given in Sections 2 and 3 of this paper shows that once the unknown functions
G, and G2 are determined upon solving the inteara1 eqns (4.4) and (4.5), all the field quantities in
the shell may be obtained by evaluating certain integrals having G1 and G2 as density functions.
One such group of quantities of practical interest is the stress and moment resultants on the
plane of the crack, i.e. along x =0, Iyl > 'lie. Referring to (3.16) and (3.17) it may be noted that,
aside from the factors 2'71' and 2'7rhla, (4.4) and (4.5) give the expressions for Nn and Mn for all
values of y, Le. for -00 < y< 00, x =O. Thus, Nn and Mn for Iyl > Ve may be evaluated from
(4.4) and (4.5) by using the same kernels with Iyl > Vc and the density functions G1(t) and
G~t), It\<Ve.

Another group of quantities of physical interest is the crack surface displacements" and w,
and the rotation /3". From (3.18), (3.19) and (3.25) it may easily be seen that

f
ve

u(+O, y) =- y G,(t) dt,

f
ve

/3,,(+0, y) =- y G2C:t) dt,

-Ve < Y<Ve,

-Vc<y<Ve.

(5.1)

(5.2)

The displacement component w which is perpendiculat to the shell surface is given by (3.7) and
may be expressed in terms of G. and G2 by using the expressions (3.8), (3.34) and (3.33) as
follows:

A
2 Ive L" 4 .2~(a)W(+O, y) =- - G,(t) dt L ,\ '1fJJ ,\ '1 :z sin aCt - y) da

'7r -Ve 0 1 2 mj - t a

A2 Ive L" 4 plN,(a) .
-- G~t)dt L,\ '1 '1 ,\ '1 '1 S1na(t-y)da,

'7r -'lie . 0 I 2 mj - ,a

where Qj(a) and Nj(a), (j =1, ... ,4) are known functions.

(5.3)

6. ASYMPTOTIC FIELDS AROUND THE CR.ACK TIP

The index of the singular integral equations (4.12) and (4.13) is +1 and consequently the
solution of the system is of the following form:

where hi and h2 are bounded in -1 sTJs 1. Using (6.1) and the relatiolls (17,6]

(6.1)

r" Z,,-I e-n {sin} (rz)dz = fUL) {Sin} ( tan-'!.)Jo cos (S2 +7)1Jl cos #A- s ' (s >0, #A- >0), (6.2)
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II h(1') ,fjT _ (..2!-)1/2{ [.( _:!l-)]
_I Vo- 1'2) e d1' - 21~1 h(l) exp I ~ 4 I~I

+h(-I)exp [-i(~-*~)]+O(I~I)}' (1~I_oo). (6.3)

and going back to the original expressions such as (3.20H3.24) one could obtain asymptotic
expressions for stress and moment resultants around the crack tip 1/ == I, ~ == O. Following are
typical such expressions:

hi1) h iCC 1 ( I~IQ) -Illfj . [( 11'] dMu "'" 2V'(211') 12a 0 Vi 1+ ." f" e sm 1- 1/)~ -'4 ~,

If we now define the polar coordinates r, 8 in 1/, t plane by

t == r sin 8, 1/ - I == r cos 8,

(6.4)

(6.5)

(6.6)

(6.7)

and observe that the membrane and bending components of the stresses are given by (see
Appendix A)

b 12az
O'i/==-h-Mij, (i,j=x,Y), (6.8)

from (6.4), (6.5), and similar expressions for the combined stress state (1'ij == 0''1/ + (1'~, (i, j == x, Y)
we obtain

(6.9)

(6.10)

(6.11)

Evaluating the integral from (6.6) one could also show that

(6.12)

For the symmetric problem under consideration the stress intensity factor at the crack tip is
defined by

kl(XJ) == lim V(2(X2 - a»(1'II(O, X 2, X 3).
Xr-a

Referring to the definitions given in Appendix A from (6.13) and (6.9) it then follows that

(6.13)

(6.14)
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7. THE ISOTROPIC SHELL

For an isotropic spherical shell ,\ '2 =0, ,\ I ='\2 and with q =0 eqns (2.13) and (2.14) become

,\2
~<t> -irV2W =0,

~W + ('\'\2)2(1- KV2)V2<t> =0,

(7.1)

(7.2)

which, with (2.19) and (2.20) provide the differential equations to solve the problem. From (7.1)
and (7.2) eliminating w we obtain

(7.3)

replacing (3.2) of the orthotropic shell. Again defining the solution of (7.3) by (3.3), the
characteristic eqn (3.5) becomes

(7.4)

with the roots

(7.5)

(7.6)

In this case having only two distinct roots which are known in closed form makes the analysis
considerably simpler than that required for the orthotropic shell (and also for the isotropic
cylindrical shell). Following the procedure outlined in Section 4 of this paper, one again obtains
a system of sioplar intqral equations identical to (4.4) and (4.5) with the difference that c ... 1
and the kernels "'I' (i, j ... 1,2) are now found to be

k,,(y, t) ... ( .. [2a
3 (...!.._...!..) -1] sin [(t - y)a) da,Jo K m, m2

k,iY, t) ...~ f'" [2a
3 (£1._£1) + ),,2

4
alC(T,2+ a2)(...!.._...!..) +2a2]

A ),,2 Jo K ml m2 K m2 m,

x sin [(t - y)a) da,

k2,(y, t) ... '2~ 2 f'" [aA
K

24 (ml- JlQ2 m,2 - JlQ2) +(1- v)a2] sin [(I - y)a) da,
1\ 1\2 Jo P1m2 p,m,

k2iY, t) =Af'" {-2),,241- v [m,2- va
2
(-!...._IC(T,2+a~

A 10 K p, m,P2 2am,

+ml- JlQ2 (IC(T,2 +a~ _~)]
P2 2am2 mz,p,

+2IC(1- v)2a~1 - (1- v1) } sin [(t - y)a) da,

K=)"l'V(K2'\24-4); m?=pi+a1, (;=1,2),

[
. 2 ]'12

T, ... - a
2+ K(1- v) .

(7.7)

(7.8)

(7.9)

(7.10).

8. THE RESULTS

The singular integral eqns (4.12)-(4.14) are solved by sUbstitutilla from (6.1) and usina the
Gauss-Chebyshev integration formulas. Thus, (4.12)-(4.13) may be approximated by[l8-20]

i ... 1, .. , n -I, (8.1)
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~ Wi [1-,\/ h2('T';) +v'c ±k2m (v'c1/;, v'C'T')hm('T';)]
/-1 'T'j - 1/i In = I

h=2'IT aF2(v'C1/;), i = 1, .. , n - 1, (8.2)

n

L Wiht('T'j) =0,j-.
'T'j =cos ( 'IT!~~),

(
2i-l)

1/1 =cos 1T 2n -2 '

k =1,2,

j =1, .. , n,

j == 1, .. ,n -1,

(8.3)

(8.4)

(8.5)

'IT
WI == Wn == 2(n - 1)'

IIf. =-'!!.- . 2 1no, n -1' J == , .. , n - . (8.6)

The numerical results are obtained for uniform and concentrated membrane and bending
loads on the crack surfaces. Keeping in mind that superposition is permissible, the results for
each load will be given separately. First we consider the uniform membrane loading, i.e.

or
-a <X2 <a, (8.7)

(8.8)

Here the corrapondina tat plate stress intensity factor is (1". v'a. Thus, from (6.14), it is seen
that once hl(l) and h:z(l) are obtained from the solution of the intearal equations the membrane
and bending stress intensity factor ratios may be calculated as

The second loading condition considered is

(8.9)

(8.10)

or

NII(O, X2) == 0, -a <X2 <a, (8.11)

(8.12)

In this case, referring again to (6.14), the membrane and bending stress intensity factor ratios
may be expressed as

" - kl(O) _ cE h (1)
......b-O'bVa--20'b I,

kbb == k.(h/2) - kl(O) == _ cE ...!!- h
2
0).

O'b Va 20'b 2a

(8.13)

(8.14)

In the numerical analysis the effective transverse shear modulus is assumed to be B == 5016.

(a) Isotropic shells
For an isotropic spherical shell with a Poisson's ratio v == 1/3 the calculated results are

shown in Tables 1-4. One may note that aside from the standard shell parameter '\2 which
appears in the classical shell theory, the results given in this paper depend on an additional
parameter alh which, within the confines of the shallow shell theory, gives the thickness effect.
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Table 1. The stress intensity factor ratio k",M for an isotropic spherical shell (Nil 'jIt O. AI \I =O. ,,= 1/3)

919

"'2 a/h = 0.5

0.00 1.000
0.25 1.021
0.50 1.094
0.75
1.00
1.5
2.0
2.5
3.0
3.5
4.0

a/h = 1.0

1.000
1.019
1.076
1.173
1.305

a/h '" 2

1.000
1.019
1.071
1.156
1.268
1.556
1.918

a/h = 5

1.000
1.018
1.069
1.150
1.255
1.519
1.841
2.208
2.615
3.058
3.539

a/n = 10

1.000
1.018
1.069
1.149
1.252
1.512
1.828
2.186
2.579
3.004
3.460

Table 2. The stress intensity factor ratio k"", for an isotropic spherical shell (N II ~ O. Mil = O. 11" 1(3)

0.00
0.25
0.50
0.75
1.0
1.5
2.0
2.5
3.0
3.5
4.0

a/h .. 0.5

0.000
0.041
0.095

a/h '" 1

0.000
0.037

0.090

0.133

0.157

a/h • 2

0.000
0.035
0.086
0.130
0.158
0.155
0.077

a/h • 5

0.000

0.034
0.084
0.130
0.162
0.174
0.117

-0.010
-0.206
-0.471
-0.807

a/h ., 10

0.000

0.033
0.084
0.130
0.165
0.187

0.142
0.031

-0.146
-0.390
-0.701

Table 3. The stress intensity factor ratio 41. for an isotropic spherical shell (N \I • O. Mil ,a O. " .. 1/3)

A2 a/h • 0.5 l/h • 1 l/h • 2 a/h • 5 l/h = 10

0.00 0.752 0.704 0.667 0.652
0.25 0.808 0.740 0.694 0.659 0.645
0.50 0.172 0.709 0.669 0.638 0.626
0.75 0.670 0.635 0.609 0.599
1.0 0.630 0.598 0.517 0.569
1.5 0.526 0.511 0.506

2.0 0.465 0.451 0.448
2.5 0.401 0.399
3.0 0.360 0.359
3.5 0.327 0.325
4.0 0.300 0.297
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Table 4. The stress intensity factor ratio k..b for an isotropic spherical shell (Nil = O. Mil ~ O. V =1/3)

1.2 a/h '" 0.5 a/h '" 1 a/h = 2 a/h = 5 a/h = 10

0.00 0.000 0.000 0.000 0.000 0.000
0.25 0.013 0.011 0.010 0.008 0.008
0.50 0.032 0.028 0.024 0.021 0.020
0.75 0.044 0.039 0.034 0.032

1.0 0.058 0.052 0.046 0.043

1.5 0.071 0.064 0.061

2.0 0.083 0.076 0.073

2.5 0.084 0.081

3.0 0.089 0.086
3.5 0.092 0.089

4.0 0.094 0.091

The values given for A2 =0 correspond to and agree with the flat plate results (9, 10]. For
alh =10 cak:ulated values of k".... are indistinguisbable from the classical shell theory results(3].
However, the remaining stress intensity ratios are quite difterent. Also the results found in this
paper for the isotropic shell are nearly identical to those found in (15] indicating that the effect
of the additional terms uJR and VJR retained in [15] in the expressions of transverse shear
stniRs andlfRellltmme-equilibriunrequations, respectively, on the stress intensity factors are not
significant.

Examples for the crack surface displacement w perpendic:ular to the shell surface for a
uniform membrane loadina Nil =hq... or a bendina moment Mil =h2(TJ6 are shown in Figs. 1
and 2, respectively. Even thoush around the cra,ck the shell bulges out, as observed in
cylindrical shells(6, 14], some distance ahead of the crack tip w becomes negative.

Concentrated membrane forces and JDOIIlents on the crack surfaces are used as a third kind
of loading in the isotropic shell. If the shell is under symmetrically applied concentrated
membrane forces on the crack surfaces given byt

(8.15)

0.5

2.5

2.0

1.5

~..L
a crb

1.0

O.!5 1.0 2.0 2.5
0t---+----+---~.,..-_+---1__

Xz/a

-0.5

Fig. 2. The out-of-plane crack surface displacement iltan isotropic spherical shell (Nil = O. MII;l! O. alh = 5.
A2 = 2. v = 1/3).

tin the type of numerical procedure used in this paper (indeed. generally speakina, in any type of numerical procedure)
it is not possible to hancIIe ideally concentrated input functions such as those liven by (8.15) and (8.17). In calculating the
results given in Table 5 the concentrated loads are approximated by triaft&ular distributions having an area of No or Mo.
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the stress intensity factor ratios may be defined as

921

k,(O)
kmm =(No/hal'\la'

Similarly, for concentrated moments

(8.16)

The stress intensity ratios may be expressed as

(8.17)

(8.18)

Table 5 shows the results of an example giving the stress intensity factors defined by (8.16) and
(8.18). Note that at Y =0 the concentrated loads are 2Noand 21.10•

Using the numerical procedure outlined in this section one could also obtain the "Green's
functions" for the stress intensity factors. These results may be useful in solving the shell
problems in which the crack surface tractions for the perturbation problem are not uniform. For
example, if the crack surface tractions are

NII(O, X2) =NII(O, - X2l =- N(ay)

1.1,,(0, X2) =1.1,,(0, -X2) =- M(ay)

(8.19)

(8.20)

then the membrane and bending components of the stress intensity factors may be expressed as

- ~ [ N(aYI) v' 6M(ay;) v' ]k,(O) - ~ Gmm(y;) h a +Gmb(Yi) h2 a,

kt(h/2) - k.(O) =~ [G"",(Yi) N~Y,) v'a +a..(Yi) 6M~~Y,)v'a].

(8.2l)

(8.22)

For one specific shell geometry namely, for a/h =5 and .\.2 =3 the Green's functions Gil<,
(j, k =m, b) are given by Table 6. Needless to say, the numerical procedure for evaluating Gjt is
extremely simple and basically amounts to the repeated solution of the system of linear
algebraic equations by taking only one row of the input columns FI(y,) and Fiy,) to be nonzero
at each run.

(b) Specially orthotropic shells
To give an example for specially orthotropic shells we consider two real materials namely,

titanium which is a mildly orthotropic material and graphite which is severely orthotropic:. The
elastic properties of these materials and the average shear modulus calculated from (2.7), that is

(8.23)

Table S. Stress intensity factor ratios for an isotropic spherical sheD under concentrated forces (alII =S.
A2 =3, " =1/3)

0.89

0.74
0.53
0.28
0.00

2.251
2.205
2.499
2.785
2.900

0.096
-0.006

-0.201
-0.389

-0.466

0.794
0.299
0.132
0.044

0.016

0.052
0.075
0.095
0.110
0.116
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Table 6. Green's functions for membrane and bending stress intenSity factors In symmetrically loaded
isotropic spherical shell (a/h = 5. .\2 = 3. v = 1/3)

Yi G
IIIl1

(Yi) ~m(Yi) ~b(Yi) Gmb(Yi)

0.98982 0.19074 0.00216 0.16655 0.00075

0.90963 0.26344 0.01125 0.09298 0.00608

0.75575 0.40686 -0.00110 0.05519 0.01386

0.54064 0.59218 -0.04768 0.03140 0.02245

0.28173 0.75294 -0.10516 0.01202 0.02967

0.0 0.40856 -0.06573 0.00226 0.01622

Table 7. Elastic constants of the materials used in the examples (see insert in Fig. 3)

Titanium Graphite

E1 (psi) 15.07 x 106 1.5 x 106

E2 (psi) 20.8 x 106 40 x 106

vI 0.1966 0.0075

v2 0.2714 0.2000

G12 (psi) 6.78 x 106 4.0 x 106

Gave (psi) 7.15 x 106 3.73 x 106

Table 8. The stress intensity factor ratio k..m for a titanium spherical shell (Nil ¢O, Mil =0, .\Q4=
12(1- 11

2
)1l

4fh 2R2
, 11= V(IIIJ12»

a/h " 10 a/h = 5 a/h " 2 a/h = 1

AO E1/E2" E1/E2" E1/E2" E1/E2" E1/E2" E1/E2" E1/E2" E1/E2"
0.725 1.380 0.725 1.380 0.725 1.380 0.725 1.380

0.0 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0,25 1.016 1.021 1.016 1.021 1.016 1.021 1.017 1.022
0.50 1.060 1.077 1.060 1.077 1.062 1.079 1.065 1.084
0.75 1.129 1.164 1.130 1.165 1.135 1. 171 1.148 1.187
1.0 1.220 1.276 1.222 1.279 1.232 1.291 1.262 1.327
1.5 1.450 1.555 1.456 1.561 1.486 1.596
2.0 1.733 1.891 1.744 1.903 1.807 1.976
2.5 2.056 2.270 2.076 2.291
3.0 2.415 2.685 2.446 2.718
3.5 2.806 3.132 2.852 3.183
4.0 3.226 3.611 3.296 3.687

are shown in Table 7. It may be seen that in both materials the measured shear modulus G12 is
sWBciently close to the calculated value Gayc to warrant the assumption of special orthotropy.

Tables 8-15 show the stress intensity factor ratios defined by (8.9) and (8.10) for a shell
under uniform membrane loading and by (8.13) and (8.14) for a shell under uniform bending.
Note that in each case the tables give the results for a crack parallel and for that perpendicular
to the stiffer axis of orthotropy (see Table 7 and the insert in Fig. 3). The results have been
tabulated by using ath and a parameter '\0 defined by

Ao=[12(1- vlvz)]',4atV(Rh) (8.24)

as the variables. The choice of Ao stems from the fact that the shell parameters AI and A2 are
dependent on the orientation of the crack relative to the axes of orthotropy. In order to show
the comparisOn between the isotropic results and those obtained from an orthotropic shell with
two different crack orientations some of the results are displayed graphically in Figs. 3 and 4.
The figures show that the isotropic results are bracketed by the two sets of results obtained for
the orthotropic shell with the crack parallel and perpendicular to the stiffer axis of orthotropy.
It is also seen that the material orthotropy may have a very significant effect on the stress
intensity factors.
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Table 9. The stress intensity factor ratio 4.. for a titanium spherical shell (N II ~ O. Mil = 0)

a/h '" 10 a/h '" 5 a/h '" 2 a/h '" 1

AO £, / £2'" £,/£2= £, /E 2'" E, /E2'" E, /E2'" £,/E2'" E, /E2= E, /E2,"
0.725 1.380 0.725 1.380 0.725 1.380 0.725 1.380

0.0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.25 0.025 0.029 0.026 0.030 0.027 0.031 0.029 0.033
0.50 0.065 0.073 0.066 0.074 0.068 0.075 0.071 0.079
0.75 0.104 0.115 0.104 0.115 0.106 0.115 0.109 0.118
1.0 0.135 0.148 0.134 0.145 0.133 0.142 0.134 0.141
1.5 0.165 0.175 0.158 0.164 0.145 0.146
2.0 0.146 0.145 0.129 0.121 0.099 0.083
2.5 0.077 0.054 0.047 0.015
3.0 -0.044 -0.099 -0.090 -0.158
3.5 -0.219 -0.317 -0.283 -0.398
4.0 -0.448 -0.602 -0.533 -0.709

Table 10. The stress intensity factor ratio k"" for a titanium spherbJ shell (N II =0, Mil :t- 0)

a/h "' 10 a/h '" 5 a/h .. 2 a/h "' 1

Ao E, /E2.. E, /E2- E, /E2" E, /E2", E, /E2- E, /E2- [,/E2- E, /E2-
0.725 1.380 0.725 1.380 0.725 1.380 0.725 1.380

0.0 0.632 0.634 0.651 0.650 0.691 0.687 0.742 0.735
0.25 0.626 0.628 0.645 0.643 0.684 0.679 0.732 0.725
0.50 0.611 0.612 0.628 0.626 0.663 0.658 0.707 0.699
0.75 0.589 0.590 O.fi04 0.602 0.6~ 0.629 0.673 0.665
1.0 0.564 0.564 0.577 0.574 0.602 0.596 0.636 0.628
1.5 0.510 0.509 0.518 0.515 0.536 0.531
2.0 0.458 0.457 0.463 0.460 0.479 0.473
2.5 0.412 0.411 0.416 0.413
3.0 0.373 0.372 0.377 0.374
3.5 0.341 0.339 0.344 0.341
4.0 0.314 0.31Z 0.318 0.313

Table 11. The stress in~ensity factor aOO k.... for a titanium spherical shell (Nil. 0, Mil" 0)

a/h .. 10 a/h "' 5 a/h - 2 a/h " 1

AO E, /EZ" E, /E2" E, /E2= E, /E2", E, /E2- E,tE2~ E, /E2- [,/E2"'
0.725 1.380 0.725 1.380 0.725 1.380 0.725 1.380

0.0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.25 0.006 0.007 0.006 0.007 0.007 0.008 0.009 0.010
0.50 0.015 0.017 0.016 0.018 0.019 0.021 0.022 0.024
0.75 0.OZ5 0.028 0.027 0.029 0.031 0.034 0.035 0.039
1.0 0.034 0.037 0.036 0.040 0.04Z 0.045 0.047 0.051
1.5 0.049 0.054 0.052 0.057 0.059 0.064
2.0 0.061 0.066 0.064 0.069 0.071 0.076
2.5 0.009 0.075 0.072 0.078
3.0 0.074 0.081 0.07B 0.084
3.5 0.078 0.085 0.082 0.088
4.0 0.081 0.088 0.084 0.091
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Table 12. The stress intensity factor ratio k..... for a graphite spherical shell (Nil ~ 0, Mil =0)

a/h = 10 a/h = 5 a/h = 2 a/h = 1

AO E1/ E2= E1/E2" E1/ E2= E1/E2= E1/E2= E1/E2= E1/E2= E1/E2=
0.037 26.667 0.037 26.667 0.037 26.667 0.037 26.667

0.0 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.25 1.006 1.073 1.006 1.073 1.006 1.074 1.006 1.075
0.50 1.024 1.250 1.024 1.251 1.024 1.255 1.026 1.267
0.75 1.051 1.491 1.052 1.493 1.053 1.504 1.059 1.540
1.0 1.089 1.767 1.090 1.771 1.095 1.794 1.108 1.863
1.5 1.190 2.377 1. 193 2.387 1.207 2.445
2.0 1.318 3.030 1.324 3.050 1.354 3.165
2.5 1.470 3.713 1.480 3.748
3.0 1.643 4.423 1.658 4.484
3.5 1.835 5.164 1.857 5.271
4.0 2.044 5.948 2.075 6.145

Table 13. The stress intensity factor ratio k"." for a graphite spherical shell (Nil ~ O. Mil =0)

a/h '" 10 a/h '" 5 a/h = 2 a/h " 1

A
O E1/E2= E1/E2'" E1/E2" E1/E2= E1/E2" E1/E2= E1/E2" E1/E2=

0.037 26.667 0.037 26.667 0.037 26.667 0.037 26.667

0.0 0.000 0.000 OdlOO 0.000 0.000 0.000 0.000 0.000
0.25 0.012 0.037 0.012 0.037 0.013 0.038 0.014 0.040
0.50 0.033 0.088 0.033 0.087 0.035 0.087 0.038 0.089
0.75 0.055 0.133 0.056 0.130 0.058 0.126 0.061 0.125
1.0 0.076 0.165 0.076 0.158 0.077 0.147 0.079 0.141
1.5 0.104 0.172 0.101 0.151 0.096 0.114
2.0 0.111 0.084 0.103 0.041 0.091 -0.035
2.5 0.099 -0.108 0.085 -0.179
3.0 0.069 -0.404 0.048 -0.510
3.5 0.022 -0.814 -0.006 -0.957
4.0 -0.041 -1.314 -0.074 -1.538

Table 14. The stress intensity factor ratio Ie". for a graphite spherical shell (Nil = O. Mil ;6 0)

a/h = 10 a/h = 5 a/h = 2 a/h " 1

AO E1/E2= E1/E2= E1/E2= E1/E2" E1/E2= E1/E2= E1/E2= E1/E2=
0.037 26.667 0.037 26.667 0.037 26.667 0.037 26.667

0.0 0.615 0.599 0.635 0.611 0.686 0.639 0.751 0.677
0.25 0.611 0.593 0.631 0.604 0.680 0.631 0.744 0.666
0.50 0.600 0.577 0.618 0.587 0.664 0.611 0.723 0.642
0.75 0.584 0.556 0.600 0.564 0.640 0.585 0.695 0.612
1.0 0.564 0.533 0.578 0.539 0.613 0.556 0.664 0.580
1.5 0.518 0.486 0.527 0.490 0.555 0.501
2.0 0.472 0.442 0.478 0.443 0.504 0.451
2.5 0.430 0.402 0.435 0.402
3.0 0.394 0.367 0.399 0.367
3.5 0.364 0.336 0.369 0.335
4.0 0.339 0.309 0.346 0.308

Table IS. The stress intensity factor ratio k.... for a graphite spherical shell (Nil = O. Mil ;6 0)

a/h = 10 a/h = 5 a/h = 2 a/h = 1

AO E1/E2= E1/E2" E1/E2= El /E2= E1/E2= E1/E2= E1/E2= E1/ E2=
0.037 26.667 0.037 26.667 0.037 26.667 0.037 26.667

0.0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.25 0.003 0.008 0.003 0.008 0.004 0.010 0.004 0.011
0.50 0.007 0.019 0.008 0.021 0.010 0.024 0.012 0.027
0.75 0.013 0.032 0.014 0.034 0.017 0.038 0.020 0.043
1.0 0.018 0.043 0.019 0.046 0.023 0.051 0.027 0.057
1.5 0.027 0.063 0.029 0.066 0.033 0.072
2.0 0.033 0.077 0.035 0.080 0.040 0.087
2.5 0.038 0.087 0.040 0.090
3.0 0.041 0.094 0.043 0.098
3.5 0.043 0.099 0.045 0.103
4.0 0.044 0.103 0.046 0.108
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Fit. 3. The membrane component of the stress intensity factor ratio "'- in an isotropic and in a specially
ortbotropK spbericaI (titanium) shell; alit = S, A04 = 12(1- ,,2)a

4 IR2h2
, ,,= 113 for isotropic shell, .. =

V("I~) for orthotropic sheD.
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Fig. 4. The membrane component of the stress intensity factor ratio t- in an isotropic IDd in a spccial1y
orthotropic spherical (graphite) sheD; alit =S, A.o4.12(1-1I~4IR2h2, .. -1/3 for iIobopic 1hcIl, ...

V(IIIJ12) for orthotlopic sheD.
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APPENDIX A
The dimMsiollless qllalltities

I X, Y X, X,
x=VCa' y = c-=, Z=-,

a a

u =Ye V" I V~ W
v=VCa' w=-

a a

{3. = Ye{3"
I F

{3,. = VC {3~, 4J =a2hE

0"1 cu.,., O"I:!
Un = cE' O'''=E' 0'" ="E

Nil eN,. N,~

N" = ehE' N" = hE"' N" =hE

Mil eM.. M,~

M.. =eh2E' M,., =h2E-' M"=ii!£

v, V = YcV~
V, = 'IchB' , hB'

4 ., a'"
A~ = 120-"-)~hR .c- • ~-

E
K =BA.'

(A. I)

(A.2)

(A.3)

(A.4)

(A,5)

(A.6)

(A.7)


