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Abstract—The elastostatic problem for a relatively thin-walled spherical cap containing a through crack is
considered. The problem is formulated for a specially orthotropic material within the confines of a
linearized, shallow shell theory. The theory used is equivalent to Reissner’s theory of flat plates and hence
permits the consideration of all five physical conditions on the shell boundaries separately. The solution of
the problem is reduced 10 that of a pair of singular integral equations and the asymptotic stress state around
the crack tips is investigated. The numerical solution of the problem is given for an isotropic shell and for
two specially orthotropic shells. The results indicate that the material orthotropy as well as the shell
curvature and thickness may have a considerable effect on the stress intensity factors at the crack tips.

1. INTRODUCTION

In structures consisting of relatively thin-walled curved sheets and containing a through crack
the stress intensity factors calculated under the assumption of the cracked sheet being locally
flat and that calculated from a bending theory of shells may differ quite considerably. This
curvature effect has been amply demonstrated in a number of studies on a variety of shell and
crack geometries (see, e.g. [1-4] for a crack in cylindrical shells and [3] in a spherical shell for
typical results. Also, see [5] for typical asymptotic results in shells with a quadric surface and
[6] for review and references). In these studies the so-called classical shallow shell theory is
used to formulate the crack problem. The theory permits the use of only four conditions on the
shell boundary. Hence, on the crack surface instead of prescribing twisting moment M, and
transverse shear V, separately, they are combined as the Kirchhoff effective transverse shear
V, + aM,,/ds and are given as a single boundary condition. The consequence of using such a
first order theory which does not permit the satisfaction of all physical boundary conditions is
well-known in the analogous plate bending problem. In using the classical plate bending theory
and prescribing the normal component of the bending moment M,, and the effective transverse
shear V, + dM,,/as on the crack boundary, even though at the crack tips the bending moments
appear to have the expected square-root singularity, the angular distribution of the bending
stresses around the crack tips is found to be different from that of membrane stresses resulting
from the in-plane loading of the plate and the results imply that the transverse shear V, has a
singularity of the order r™¥2, r being the distance from the crack tip (see, ¢.g.[7]). On the other
hand, as shown in [8-10}, if a more refined theory such as that of Reissner[11] is used which
permits the satisfaction of all physical conditions in M.., M,; and V, on the crack surface
separately, it may be shown that the asymptotic behaviors of membrane and bending stress
resultants around the crack tips are indeed identical and furthermore the transverse shear stress
has no singularity. '

The results found for the shells have been quite similar to that of flat plates. In limit when
the curvature goes to zero the classical shell equations uncouple and give the two biharmonic
equations for in-plane loading and bending of fiat plates. Hence, as expected, the asymptotic
results obtained from the classical shell theory show that the angular distributions of membrane
and bending stress resultants are identical to those obtained for respectively the extension and
the bending of flat plates. It is, therefore, apparent that as in the flat plate problem this
inconsistency in the stress distribution near the crack surface arising from the use of the
classical shell theory can be removed if a more refined shell theory is used to formulate the
problem. Such a linearized shallow shell theory[12] is used in {13, 14] to solve the problems of a
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cylindrical shell containing an axial and a circumferential crack, respectively. A similar theory
is used in {15] to solve the problem of cracked spherical shell.t These solutions show that by
using an appropriate shell theory which is consistent with the number of independent physical
boundary conditions it is possible to obtain identical asymptotic distributions for bending and
membrane stress resultants.

In this paper the problem of a shallow spherical cap containing a through crack is
reconsidered. The problem is formulated by using the theory described in [12]. The solution is
given for specially orthotropic as well as isotropic shells.

2. BASIC FORMULATION
Referring to Fig. 1, let Ny, M; and V; (i, j = 1, 2) be respectively membrane, moment, and
transverse shear resultants in an arbitrary shallow shell. Under the assumptions generally
associated with shallow shells the equilibrium equations may be expressed asi[12]

N;i =0, 2.1
Vi +(Z Ny} +q9(X1, X2) =0, (2.2)
M;i-Vi=0, (i=12 j=12) (2.3)

-4

Fig. 1. The out-of-plane crack surface dispiacement in an isotropic spherical shell (N, #0, M,, =0, a/h =5,
Az =-‘2. v= 1/3)

tThe difference between thesc two theories is that the terms w/R in the expressions of transverse shear strains and
V/R in the membrane equilibrium equations are retained in {15] and are neglected in {13, 14). However, since the results
given in [15] and the isotropic shell resuits given in this paper are nearly identical, for the type of problems under consideration
keeping these additional terms does not seem to be necessary.
tIn this section the summation convention and the indicial notation are used for conciseness.
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where g is the surface loading and Z(X|, X,) gives the perpendicular distance of the points on
the middle surface of the shell to the tangent plane described by the rectangular axes X, X;.
Let U, W and B;, (i = 1,2) be respectively the X; and the X;-components of the displacement
and the angles of rotation of the normal to the shell surface. Since the constitutive equations
relating the stress resultants N, M; and V; and the “displacement” quantities U,, 8; and W
involve first order differential operators, it is clear that expressed in terms of the five
displacement quantities egns (2.1)=(2.3) would give a system of five second order differential
equations. Thus, prescribing a set of five boundary conditions in terms of U, 8;, W and their
first derivatives the problem becomes a well-posed problem.
Let F be the stress function defined by

Ny=exeyFu, (i,j=1,2) (2.4)

where ¢; is the permutation symbol.T Substituting from (2.4) it is seen that (2.1) is satisfied.
Consider now the following stress-displacement relations

€, = apNulh = % WUy, + U, +ZW,+Z,W,),  Gj=1,2) 2.5)

where h is the shell thickness. Substituting from (2.4) and eliminating U, and U,, (2.5) becomes
CimEmCipCiqlisaF mnpg + hZ jjeneyW iy = 0. 2.6)

A similar complicated differential equation is obtained from (2.2). For the general anisotropic
material assumed in (2.5) even for very simple shell geometries these differential equations do
not seem to be analytically tractable. However, as shown in [6], if one assumes the material to
be specially orthotropic the related differential operators can be factorized and the problem
becomes tractable. Writing the differential equations for an orthotropic material with constants
E\, vi, Ey, v, and Gy, it can be shown that[6] the condition for factorization is

_ _VI(EE)
ZG|2 bl m- (2-7)

The material satisfying (2.7) is said to be specially orthotropic. Defining
E=V(E\E), v=V(w), c=(E/E" (2.8

the relations between stress and displacement quantities in the shell may be expressed as

=g (Nulc =N, en=ZNu,  en=pe(@Na=Nw,  (29)
My =D(c’Bii+vBrd), M= D(l ) (Br2+ B2)s
2.10)
3
= D(vBl.l + 32‘2lc2)’ D IZ(fh )9
Vi _5_E
g = Wath hB Vi=WaotBy  B=F3aTs5 @1

where bending stresses are assumed to vary linearly in thickness direction and B is the effective
shear modulus{11].

*e” =0= €3, €12 = I= —&;.
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Using the relations (2.9)=2.11), the normalized quantities defined in Appendix A, and the
curvatures defined by

3’z 1 3’z 1 ¥z 1

X" R oX7 R 0XwX: R @12
the differential egns (2.6), (2.2) and (2.3) become
V- (,\,z—z ~nh a:ay s )w =0, @.13)
Viw +A%(1 - KVZ)(M ~nh my a2 )¢ A(1-xT g, (2.14)
(1-xVB, +2% = ¢ S :y (—a% —aéy—) @.15)
(1-«V28, +%§ =izl (9%-%%) 2.16)

The normalizing constant ¢ used in Appendix A is an additional length parameter in the shell
which, in crack problems, is usually taken to be the half crack length. Defining the functions

Qx, y) = i —5‘-’1 @1
X
v 9B 3By
Ylix, y) "(ax+ay) w, (2.18)

eqns (2.15)~(2.16) may be replaced by the following somewhat simpler equations(14]

kVp—¢g—-w=0, (2.19)

filzlﬂvﬁnaﬁ =0, (2.20)

3. SPHERICAL SHELL
Consider a specially orthotropic spherical shell which contains a meridional crack of length
2a along the X, axis. Thus, A, = 0 and, because of orthotropy, A, # A, (see Appendix A). Since
we are interested in the stress perturbation problem in which crack surface tractions are the
only external loads, without any loss in generality we may also assume that q = (. Defining the
operator

Y ,
V=A 3;14')\2 e a1
from (2.13) and (2.14) we obtain
ViV + V29,51 -k VD) = 0. (3.2)

Let the solution of (3.2) be of the form

olx, y)= 2—;- Lﬂ g(x,a)e™™ da. (3.3)
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From (3.2) and (3.3) it may be shown that the unknown function g vanishing at x = ¥ © may be
expressed as

4
> R(a)e™, x>0
1

glx,a)= (3.4)
;R,-(a)e"'f‘, x<0

where R, j=1,...,8) are unknown and m,,...,ms are the roots of the following charac-
teristic equation

m?=p+a?

P* = kA2'p® + (2kA A2 — 26z e + A5 Y)p?
+(2kA 2A2a — kAfa? — kA et 200 - 20 20D + (AP - A D)%t =0 (3.5)

satisfying
RE(Mj) <0, mj.e=—m;, ] =1,...,4. (3.6)

Assuming the solution

w(x, y) = 5‘; j_: f(x,a)e™™ da, 3.1

from (2.13) and (3.4) it may be shown that

4 2
'\zz—r&ga—)z‘ﬂe”‘", x>0,

1 sz; -Av'a

f(x,a)= . , (3.8)
2 Ri(a)
A ;rfﬁf}‘-‘%’?w' x <0.

Similarly by assuming that

0,y =5 [ h(x,a)e™ da, 39

Y(x,y)= 5]_; f_ : 0(x,a) e™™ da, (3.10)

from (2.20) and (2.19) it may be shown that

_ [A@)e™, x>0,
hix,a)= {Az(a) e x <0, 3.11)
2 Ri(a)p} myx
A i\ (xp; = IXA2"m{ = Ay*a®) ¥, x>0
0(x,a)= 3.12)
2

% (kp; — DA'm — A %a?)

where

12
N 2 v)] . (3.13)
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The problem is thus reduced to the determination of unknown functions R;, ..., Ry, A, and A,
which may be done by using the appropriate boundary conditions. In the spherical shell loaded
symmetrically with respect to the plane of the crack (i.e. x =0 plane) stress and moment
resultants satisfy the following symmetry conditions:

Ni(x, )’) = N (—x, Y)v ny(xs y)=—Nx(-x, )’),
Mxx(xy )’) = My (—x, )’)1 Mxy(x, y)=-— xy(—xv y)’
Vilx, y) = =Vi(=x, y). (3.19)

Since (3.14) is valid for all x and y, in solving the problem it is sufficient to consider one half of
the medium for which x > 0. Thus, there are only five unknowns R, ..., R, and A, which may
be determined by using five boundary conditions prescribed at x = +0.

Let the resultants N,,, M,, and V, be zero on the crack surfaces. Then, because of assumed
symmetry

Ny 0,y)=0, M,(0,y)=0, Vi(0,y)=0, -—o<y<o, (3.15)

Equations (3.15) may be used to eliminate three of the five unknown functions R, ..., R, and
A,. The remaining two are detesmined-by using the following-mixed-boundary conditions:

liTo Nu(x,y)=F(y), -Vc<y<Ve, (3.16)
lililo M, (x,y)=FAy), -Vec<y<Ve, 3.17
u©0,y)=0, Ve<lyl<w, (3.18)
B:(0,y)=0, Ve<|y|<w=, (3.19

where F, and F, are known functions and ¢ = (E|/E2)" (see Appeadix A).
Using (3.3), (3.4) and (3.7)~(3.12), from the basic expressions given in the previous section
the relevant components of the stress and moment resuitants for x >0 may be obtained as

L] 4
Ni(x, y) =~ % f a?D Ri(a)e™ ™ da, (3.20)
- |
i " & _
Ny(x, y)=- 3 f_m 2. m;R;(a) e™ " da, 3.21)
a 2 Rl(a)}’] (ml a2 ) mp:—iyu
Mu(xy) =13 21: - 2 (xp; - DAZmI A2 © da
- 5‘%};—;{—’)— 5‘; J'_Q anAa) e da, (3.22)
=_a(l—V)L ” 2 $ L(a)PJ ml m,x—iya
Mxy(X, )') A ry P 2 (KP] = 1)("2 mi - az) da
%{l 1 f Ala)r?+a?) e da, (.23)
av, 2 j R Ri(a)p/m; myx—iya
3)’ KA 271' i (xp; — l)(lzjz;]z - A]ﬁzp) e da

_ K(lz_ V)E:_T.] aZAI(a) efnx—ive da. (3.24)
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Even though the mixed boundary conditions (3.16)~(3.19) would give a system of dual
integral equations to determine the remaining two unknown functions, the problem may be

reduced directly to a pair of integral equations by defining the following two new unknown
functions:

%u(+o,y1= Gi(y), %3x(+0-y)=62()’)- (3.25)

Again, using the solution obtained in this section and the basic expressions given in the
previous section, and observing that

2

w0 =-Lec0n 2 Luco.y)
ay ’ ax ’ A ax »Ih
it may be shown that
i < ,
Gi(y)=- "*f a™'Y, m’Ri(a)e ™ da
213' —® 1

. oe 4 I
+Afo= _‘042—‘?‘—‘;’)&—’,"55’” da, (3.26)

T Armi—Ara

. e 4 2
=2 0 Ri(a)pim; ~iya
Galy)=-A 27 f-w @ Z (xp; = DA M} = Ay'a”) ¢ da

_ xﬂ; t’)'z_l.;f: atAfa)e™ da. (3.27)

Thus, inverting (3.26), (3.27) and (3.21), (3.23) and (3.24) after substituting into (3.15), and using
(3.18) and (3.19) the following system of algebraic equations is obtained:

Ay(a) = 2fa), (3.28)

2 mR(e)=0, (3.29)

i

2 2n 2 — Ao2mS + A laim?
> Alaliepip o M) (o), (3.30)
3 Ri(a)p? i(1-
2 (xp;— 1)’((,\?3?5 o) :(ga;z)x (r?+a)fala), (3.31)
; Ri(a)p’m _il-»)
2 (kp;— DA M~ Ale®) A? afa), (332
where . |
fila) = f_ L, G0edn (k=1.2). (3.33)

Equations (3.29)~(3.32) may be solvéd giving Ry, ..., R, in terms of f, and f as follows:
Ri(a)=i[Qa)f (a)+ Ni(a)fAa)}, j=1,...,4 (3.34)

where Q; and N;, (j = 1,...,4) are known functions.

4, THE INTEGRAL EQUATIONS
The analysis given in the previous section indicates that determination of the functions G,
and G, would complete the solution of the problem. These functions are determined by using
the boundary conditions (3.16) and (3.17). Thus, by substituting from (3.28), (3.33), (3.34), (3.20)
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and (3.22) into (3.16) and (3.17) one obtains a system of integral equations of the following
form:

lim 2 G,(t)dtf Kyla,x)e'“™da =F(y), k=12, -Vc<y<Ve (4.1

x~+0

The functions Ky{a, x) are bounded everywhere in —2<a <® and contain exponential
damping terms of the form exp (m;x), exp (r;x), Re(m;) <0, Re(r) <0. Since m,,..., m, are
not explicitly known functions of a, one needs to obtain asymptotic expressions for m; as well
as other terms in Kj; for large values of |a| in order to examine the singular behavior of the
kernels in (4.1). Thus, from the characteristic equations (3.5) and (3.13) it can be shown that for
large values of |a| we have

. .2
m’(a)=—|a|(l+i%7—'82¢i—4+"‘), j=1,...,4, (42)
ri@)=—tal(1+ =) 4.3)

where the roots p;(a) are bounded for all values of a. The asymptotic values of K;; (k,j =1,2)
for large || may then be obtained by using (4.2) and (4.3). Adding and subtracting these values
to and from K,; in (4.1) one may easily separate the dominant.part of the kernels. After carrying
out this somewhat lengthy but straightforward analysis the integral equations and the kernels
are found to be

e ?i(t) de + f 2 ki3, )G(8)dt =2aF\(y), -Ve<y<Ve, (4.4)

l‘ I wc ?i( D + - i ky(y. )Gy(t) dt = 2nl FF),  —Ve<y<vVe,  (43)
ki(y, t) = fo [2 5;, a’Qla) - 1] sin a(t - y) de, (4.6)
kn(y,t)=r2a2i Nj(a)sin a(t - y) da, 4.7

L i w’)Qa) -
ku(y, t)= —-;f (;pzi'—_—]m%-rgssma(t y) da, 4.8)

o 2 ([ S _pim - m)N)
kaly, 1) = A‘fo [* . gy

- k(1= viar, +(1- vz)/Z] sina(t—y)da (4.9)

where the kernels k;(y, t), (i, j = 1, 2) are bounded in the interval —Vc <(y,t) < V.

The index of the singular integral eqns (4.4) and (4.5) is +1. Consequently, the general
solution of the system will contain two arbitrary constants[16]. The two additional conditions
necessary to determine these constants are obtained from the boundary conditions (3.18) and
(3.19) and the definition of G, and G as given by (3.25). From these equations it follows that for
u and B, to be single-valued G, and G, must satisfy the following conditions:

Ve
G(hdt=0, (j=1,2). (4.10)

For the convenience of solving the integral equations (4.4) and (4.5) numerically, following
normalized quantities are defined:

r=tIVe, n=yVe, é=x/Ve, Hi(r)=G(Vcr), Hxr)=GAVecr). 4.11)



Effect of transverse shear and material rothotropy in a cracked spherical cap 915
The egns (4.4), (4.5) and (4.10) would then become

1 Hl(T) 1 2
j Py dr+Ve j > ki(Ven, Ver)Hy(r) dr =2aF(Ven),  -1<n<1, (4.12)
-1 -1t

—? ! 12 h
L f | f—f—’;} dr+Ve J'_‘ 3 ky(Ven, VenHi(n) ér =2n £ FVen),  -1<n <1,
@.13)

f "Hydr=0, (=12 (4.14)
-1

5. CRACK SURFACE DISPLACEMENTS

The analysis given in Sections 2 and 3 of this paper shows that once the unknown functions
G, and G; are determined upon solving the integral eqns (4.4) and (4.5), all the field quantities in
the shell may be obtained by evaluating certain integrals having G, and G, as density functions.
One such group of quantities of practical interest is the stress and moment resultants on the
plane of the crack, i.e. along x =0, |y| > V/c. Referring to (3.16) and (3.17) it may be noted that,
aside from the factors 2= and 2wh/a, (4.4) and (4.5) give the expressions for N, and M,, for all
values of y, i.e. for ~0<y <, x =0. Thus, N,, and M,, for |y| >Vc¢ may be evaluated from
(4.4) and (4.5) by using the same kernels with |y|> V¢ and the density functions G(¢) and
GA1), ltl < Ve.

Another group of quantities of physical interest is the crack surface displacements u and w,
and the rotation B8,. From (3.18), (3.19) and (3.25) it may easily be seen that

Ve
u(+0,y)=- f G(t)dt, -Ve<y<Vi, ¢.1
y
Ve
B:(+0,y) = - f GAt)dt, -Ve<y<Ve. 5.2)
y

The displacement component w which is perpendiculat to the shell surface is given by (3.7) and
may be expressed in terms of G, and G, by using the expressions (3.8), (3.34) and (3.33) as
follows:

_ AZ Ve « 4 2 (a) .
w(+0,y) = _;J'—\/c Gy(t) dt fo 2 A—;ﬁ_gﬁmsu\ a(t - y)da
Ve o
L cna [T 3 R o - ) da 53)
m J-e . 0 }

1 /\2"!;‘/\ a

where Qi(a) and Nj(a), (j =1,...,4) are known functions.

6. ASYMPTOTIC FIELDS AROUND THE CRACK TIP

The index of the singular integral equations (4.12) and (4.13) is +1 and consequently the
solution of the system is of the following form:

Hi(m)=h(n)X1-9"", (=12 6.1)

where h, and h, are bounded in —1 =<+ = 1. Using (6.1) and the relations [17, 6}

[[omer (i) b s). 0wz, 2
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[ e ol

+ h(~1)exp [—i(B “%u%)] +o<| ﬁl>} (18- 6.3)

and going back to the original expressions such as (3.20)-(3.24) one could obtain asymptotic
expressions for stress and moment resuitants around the crack tip n = 1, £ =0. Following are
typical such expressions:

iv'((‘zl)— v'<1+|flﬂ)e""" sin [(l-n)ﬁ——] dg, (6.4)
‘V—hz((zl) 12a f 7"(1 +1€18) e 7% sin [(1 - B ——] dg, 6.5)

Ve= 59 [% hy(1(AAy)? - hz(l)] fo i B~ e7HI sin [(1 -nB- %] dB. (6.6)

If we now define the polar coordinates r, 8 in 7, £ plane by
E=rsinb, n—1=rcos#, 6.7

and observe that the membrane and bending components of the stresses are given by (see
Appendix A)

12az

agij = Nli1 a’s = T Mi9 (isj =X, }'), (6'8)

from (6.4), (6.5), and similar expressions for the combined stress state o;; = 0§ + 05, (i,j =x, y)
we obtain

_mD+zh(D 5 8 1 58

Oxx = 2r) [4 €08373°%7 ] ’ ©
h

Oyy =~ ‘(;) *'(;'r')’(l) [ cos g +: cos 222], (6.10)

Txy = —

h|(1)+zhz(l)[ 1.6 56

1
@r) y =sin= 3 +4 sin —i—] (6.11)

Evaluating the integral from (6.6) one could aiso show that

V,= [ —% hi(D(AA)? + hz(l)](%)”z sin @ cos 9

3 (6.12)

For the symmetric problem under consideration the stress intensity factor at the crack tip is
defined by

ki(Xy) = }im V(X2 - a))o (0, X3, X3). 6.13)
—a
Referring to the definitions given in Appendix A from (6.13) and (6.9) it then follows that

kxy=-E¥a]

h.(l)+2(a—’ hz(l)]. (6.14)
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7. THE ISOTROPIC SHELL
For an isotropic spherical shell A;;=0, A; = A; and with g =0 eqns (2.13) and (2.14) become

V‘ A22 20y
¢-7\7Vw—0, 1.0
T*'w + (AA)H(1 ~ k V)V =0, (7.2)

which, with (2.19) and (2.20) provide the differential equations to soive the problem. From (7.1)
and (7.2) eliminating w we obtain

Véd — kA2*'Vie + A,V = 0. (7.3)

replacing (3.2) of the orthotropic shell. Again defining the solution of (7.3) by (3.3), the
characteristic eqn (3.5) becomes

p’—rAp?+ A =0, (1.4)

””‘—2‘(‘-\/(‘ 1)) ps=0. (1.5)

In this case having only two distinct roots which are known in closed form makes the analysis
considerably simpler than that required for the orthotropic shell (and also for the isotropic
cylindrical shell). Following the procedure outlined in Section 4 of this paper, one again obtains
a system of singular integral equations identical to (4.4) and (4.5) with the difference that ¢ = 1
and the kernels ky;, (i, j = 1, 2) are now found to be

with the roots

k0= [ [ (E-1) 1] sinice - v e, 1.6
NI
X sin{(f - y)a] da, a7
D=y [, [ (B2 -0 4 (et sin i - ylalda,  (19)
kot = [} {-on L [ (-G
- (K(rzi;f 2- m:'pl)]
+20(1=vPan~(1-») ] sin ¢ - y)al da, a9

K= Azz\/(KzA; —4),' miz =pi + azy (' = la 2)9

. 2 12
n=- ["2+K(1 = v)] : (7.10).

8. THE RESULTS

The singular integral eqns (4.12)-(4.14) are solved by substituting from (6.1) and using the
Gauss-Chebyshev integration formulas. Thus, (4.12)~(4.13) may be approximated by[18-20]

Sw [-L‘-’Lwc i kinVen, Verha(n) | = 20F (Vem),

j=1

i=1,..,n-1, @.1)
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n — 2 X 2
3w [ L M s ve 3 kan(Ver Verha(o) |

< A
h .
=21r;Fz(\/cn,-), i=1,..,n-1, (8.2
> Wih(r)=0, k=12, (8.3)
=1
Tj = COS (w ;'I—Ell), j=1,..,n, 8.4
_ 2i—1 . _
0 = COs (w n 3 2), i=1..,n-1, (8.5)
= T P = -
W'=W"—2(n—l)’ W; g j=2,..,n-1 (8.6)

The numerical results are obtained for uniform and concentrated membrane and bending
loads on the crack surfaces. Keeping in mind that superposition is permissible, the resuits for
each load will be given separately. First we consider the uniform membrane loading, i.e.

Nu(0, X3) == Ny = — hom, M0, X3) =0, -a<X;<a, 8.7
or
F(Ven)=—-ow/cE, F(Ven)=0, -l<g<l (8.8)

Here the corresponding flat plate stress intensity factor is o, Va. Thus, from (6.14), it is seen
that once h,(1) and hy(1) are obtained from the solution of the integral equations the membrane
and bending stress intensity factor ratios may be calculated as

kO __cE,

Keim “o.Va_ 2. (1), (8.9)
_kh)—=k(©)_ _cE h
Kom = onVa 20424 ha(1). &1

The second loading condition considered is

2
Nu0.X)=0, Mi@Xd=-Mu=-2a, -a<xi<a ®.11)
or
F.(Ven) =0, Fz(\/cn)=—%, —-1<p<l. (8.12)

In this case, referring again to (6.14), the membrane and bending stress intensity factor ratios
may be expressed as

Koy = —7—(:'(02 =- % hy(1), (8.13)
kv = kl(hfb) —ak;(O) =- %% hA1). 8.14)

In the numerical analysis the effective transverse shear modulus is assumed to be B = 5G/6.

(a) Isotropic shells

For an isotropic spherical shell with a Poisson’s ratio » = 1/3 the calculated results are
shown in Tables 1-4. One may note that aside from the standard shell parameter A; which
appears in the classical shell theory, the results given in this paper depend on an additional
parameter a/h which, within the confines of the shallow shell theory, gives the thickness effect.
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Table 1. The stress intensity factor ratio km» for an isotropic spherical shell (N;; #0, M, =0, » = 1/3)

Ao a/h = 0.5 a/h = 1.0 a/h = 2 a/h =5 a/h = 10
0.00 1.000 1.000 1.000 1.000 1.000
0.25 1.021 1.019 1.019 1.018 1.018
0.50 1.094 1.076 1.0Nn 1.069 1.069
0.75 1.173 1.156 1.150 1.149
1.00 1.305 1.268 1.255 1.252
1.5 1.556 1.519 1.512
2.0 1.918 1.84) 1.828
2.5 2.208 2.186
3.0 2.615 2.579
3.5 3.058 3.004
4.0 3.539 3.460

Table 2. The stress intensity factor ratio kuw for an isotropic spherical shell (Ny, #0, M;; =0, v=1/3)

A, a/h = 0.5 a/h =1 a/h =2 a/h =5 a/h =10
0.00 0.000 0.000 0.000 0.000 0.000
0.25 0.041 0.037 0.035 0.034 0.033
0.50 0.095 0.090 0.086 0.084 0.084
0.75 0.133 0.130 0.130 0.130
1.0 0.157 0.158 0.162 0.168
1.5 0.155 0.174 0.187
2.0 0.077 0.117 0,142
2.5 ~0.010 0.031
3.0 ~0.206 -0.146
3.5 -0.4N -0.39%0
4.0 -0.807 -0.701

Table 3. The stress intensity factor ratio ke for an isotropic spherical shelt (Ny; =0, My; #0, » = 1/3)

Ay a/h = 0.5 a/h =1 ath =2 a/h =5 a/h = 10
0.00 0.752 0.704 0.567 0.652
0.25 0.808 0.740 0.694 0.659 0.645
0.50 0.772 0.709 0.669 0.638 0.626
0.75 0.670 0.635 0.609 0.599
1.0 0.630 0.598 0.577 0.569
1.5 0.526 0.5M 0.506
2.0 0.4565 0.451 0.448
2.5 0.401 0.399
3.0 0.360 0.359
3.5 0.327 0.325

4.0 0.300 0.297
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Table 4. The stress intensity factor ratio km» for an isotropic spherical shell (Ny; =0, M\, #0, » = 1/3)

Ay a/h = 0.5 a/h =1 ath = 2 a/h =5 a/h = 10
0.00 0.000 0.000 0.000 0.000 0.000
0.25 0.013 0.0m 0.010 0.008 0.008
0.50 0.032 0.028 0.024 0.021 0.020
0.75 0.044 0.039 0.034 0.032
1.0 0.058 0.052 0.046 0.043
1.5 0.07Mm 0.064 0.061
2.0 0.083 0.076 0.073
2.5 0.084 0.081
3.0 0.089 0.086
3.5 0.092 0.089
4.0 0.094 0.091

The values given for A, =0 correspond to and agree with the flat plate results[9, 10). For
alh = 10 calculated values of k... are indistinguishable from the classical shell theory resuits(3].
However, the remaining stress intensity ratios are quite different. Also the results found in this
paper for the isotropic shell are nearly identical to those found in [15] indicating that the effect
of the additional terms «/R and Vi/R retained in [15] in the expressions of transverse shear
strains and-membrane equilibrium-equations, respectively, on the stress intensity factors are not
significant.

Examples for the crack surface displacement w perpendicular to the shell surface for a
uniform membrane loading N, = ho,, or a bending moment M, = h’0,/6 are shown in Figs. 1
and 2, respectively. Even though around the crack the shell bulges out, as observed in
cylindrical shells[6, 14], some distance ahead of the crack tip w becomes negative.

Concentrated membrane forces and moments on the crack surfaces are used as a third kind
of loading in the isotropic shell. If the shell is under symmetrically applied concentrated
membrane forces on the crack surfaces given byt

Nu(0, X3) = — Nol8(X; — ay;) + (X2 + ay))], (8.15)

28

20

03

0.5

Fig. 2. The out-of-plane crack surface displacement irran isotropic spherical shell (N, =0, My # 0, alh = 5.
Az=2,»=1/3).

o 1in the type of numerical procedure used in this paper (indeed, generally speaking, in any type of numerical procedure)
it is not possibie to handle ideally concentrated input functions such as those given by (8.15) and (8.17). In calcuiating the
results given in Table 5 the concentrated loads are approximated by triangular distributions having an area of Ng or M,.
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the stress intensity factor ratios may be defined as

k() _ ki(hj2) - k\(0)

knm = (NofhayVa® = (Noha)Va (8.16)
Similarly, for concentrated moments
M0, X2) = — Mo[8(X,— ay;) + 8(X; + ay))]. 8.17)
The stress intensity ratios may be expressed as
ki(0) _ ky(h/2) = ky(0) &.18)

ko = GMoJah Ve = 6MJah)Va'

Table S shows the results of an example giving the stress intensity factors defined by (8.16) and
(8.18). Note that at y =0 the concentrated loads are 2N, and 2M,.

Using the numerical procedure outlined in this section one could also obtain the “Green’s
functions™ for the stress intensity factors. These results may be useful in solving the shell
problems in which the crack surface tractions for the perturbation problem are not uniform. For
example, if the crack surface tractions are

Nu(0, X3) = Ni1(0, —X32) = — N(ay) (8.19)
M0, X3) = M,(0, - X5) = — M(ay) (8.20)

then the membrane and bending components of the stress intensity factors may be expressed as

60 = 3, [ Gan 00 282 Vo + G S v ], ®21)
12~k = 3 [ Gun0) Y2V + G0 v . 62

For one specific shell geometry namely, for a/h =5 and A, =3 the Green's functions Gy,
(j, k = m, b) are given by Table 6. Needless to say, the numerical procedure for evaluating Gy is
extremely simple and basically amounts to the repeated solution of the system of linear
algebraic equations by taking only one row of the input columns F\(y;) and Fx(y;) to be nonzero
at each run.

(b) Specially orthotropic shells

To give an example for specially orthotropic shells we consider two real materials namely,
titanium which is a mildly orthotropic material and graphite which is severely orthotropic. The
elastic properties of these materials and the average shear modulus calculated from (2.7), that is

V(E.E
Guve = 5 823
21+ V()
Table 5. Stress intensity factor ratios for an isotropic spherical shell under concentrated forces (a/h =5,
Az=3,v=1/3)
¥y *mm b %bb )

0.89 2.251 0.096 0.794 0.052

0.74 2.205 -0.006 0.299 0.075

0.53 2.499 -0.201 0.132 0.095

0.28 2.785 -0.389 0.044 0.110

0.00 2.900 -0.466 0.016 0.116
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Table 6. Green's functions for membrane and bending stress intensity factors in symmetrically loaded
isotropic spherical shell (a/h =5, A2=3, v =1/3)

¥; Grn(Y3) Gy(¥3) Gyp(y;) G (¥3)
0.98982 0.19074 0.00216 0.16655 0.00075
0.90963 0.26344 0.01125 0.09298 0.00608
0.75575 0.40686 -0.00110 0.05519 0.01386
0.54064 0.59218 -0.04768 0.03140 0.02245
0.28173 0.75294 -0.10516 0.01202 0.02967
0.0 0.40856 -0.06573 0.00226 0.01622

Table 7. Elastic constants of the materials used in the examples (see insert in Fig. 3)

Titanium Graphite
£, (psi) 15.07 x 108 1.5 x 108
E, (psi) 20.8 x 10° a0 x 108
v 0.1966 0.0075
v, 0.2714 0.2000
Gy, (psi) 6.78 x 106 4.0 x 108
G, (psi) 7.15 x 108 3.73 x 106

ave

Table 8. The stress intensity factor ratio k.. for a titanium spherical sheli (Ny #0, M), =0, A¢'=
1201 ~ ¥)a*lh*R2, v = V(»i»)

a/h = 10 a/h =5 a/h = 2 a/h =1

)‘0 E1/E2= EllEZ' E1/E2= EI/EZ= E]/Ez= E]/E2= E1/Ez= E1/E2=

0.725 1.380 0.725 1.380 0.725 1.380 0.725 1.380
0.0 1.000 1,000 1.000 1.000 1.000 1.000 1.000 1.000
0.25 1.016 1.021 1,016 1.021 1.016 1.021 1.017 1.022
0.50 1.060 1.077 1.060 1.077 1.062 1.079 1.065 1.084
0.75 1.129  1.164 1,130 1.165 1.135 1.171 1.148 1.187
1.0 1,220 1.276 1.222 1.279 1.232 1.291 1.262 1.327
1.5 1.450 1.555 1.456 1.561 1.486 1.596
2.0 1.733  1.897 1.744 1.903 1.807 1.976
2.5 2.056 2.270 2.076 2.291
3.0 2.415 2.685 2.446 2.78
3.5 2.806 3.132 2.852 3.183
4.0 3.226 3.611 3.296 3.687

are shown in Table 7. It may be seen that in both materials the measured shear modulus G, is
sufficiently close to the calculated value G,.. to warrant the assumption of special orthotropy.

Tables 8-15 show the stress intensity factor ratios defined by (8.9) and (8.10) for a shell
under uniform membrane loading and by (8.13) and (8.14) for a shell under uniform bending.
Note that in each case the tables give the results for a crack parallel and for that perpendicular
to the stiffer axis of orthotropy (see Table 7 and the insert in Fig. 3). The results have been
tabulated by using a/h and a parameter A, defined by

Ao =[12(1 =~ »;»:)]"*a/V(Rh) 8.24)

as the variables. The choice of A, stems from the fact that the shell parameters A, and A, are
dependent on the orientation of the crack relative to the axes of orthotropy. In order to show
the comparison between the isotropic results and those obtained from an orthotropic shell with
two different crack orientations some of the results are displayed graphically in Figs. 3 and 4.
The figures show that the isotropic results are bracketed by the two sets of results obtained for
the orthotropic shell with the crack parallel and perpendicular to the stiffer axis of orthotropy.
It is also seen that the material orthotropy may have a very significant effect on the stress
intensity factors.
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Table 9. The stress intensity factor ratio ks for a titanium spherical shell (N;, # 0, M;, =0)
a/h =10 a/h =5 a/h = 2 a/h =1

0 EV/Er BB Ei/Ey E\/E EyfEy E/Ep E/Ey Ey/E,s
0.725 1.380 0.725 1.380 0.725 1.380 0.725 1.380

.0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
.25 0.025 0.029 0.026 0.030 0.027 0.031 0.029 0.033
.50 0.065 0.073 0.066 0.074 0.068 0.075 0.0717 0.079
.75 0.104 0.115 0.104 0.3115 0.106 0.115 0.109 0.118
.0 0.135 0.148 0.134 0.145 0.133 0.142 0.134 0.14
5 0.165 0.175 0.158 0.164 0.145 0.146

0 0.146 0.145 0.129 0.121 0.099 0.083

5 0.077 0.054 0.047 0.015

.g -0.044 -0.099 -0.090 -0.158
0

-0.219 -0.317 -0.283 -0.398
-0.448 -0.602 -0.533 -0.709

BWWNON SO0 0O

Table 10. The stress intensity factor ratio ku for a titanium spherical shell (N1, =0, M), # 0)

a/h = 10 a/h=5 - a/h = 2 a/h = 1

Ao E\/Ey= E\/E= Ef/E)= E\/E,x E1/E2' Ey/Ep= E\/E= Ey/E,=

0.725 1.380 0.725 1.380 0.725 1.380 0.726 1.380
0.0 0.632 0.634 0.651 0.650 0.691 0.687 0.742 0.735
0.25 0.626 0.628 0.645 0.643 0.684 0.679 0.732 0.725
0.50 0.611 0.612 0.628 0.626 0.663 0.658 0.707 0.699
0.75 0.588 0.590 0.604 0.602 0.634 0.629 0.673 0.665
1.0 0.564 0.564 0.577 0.574 0.602 0.596 0.636 0.628
1.5 0.510 0.509 0.518 0.515 0.536 0.53)
2.0 0.458 0.457 0.463 0.460 0.479 0.473
2.5 0.412 0.411 0.416 0.413
3.0 0.373 0.372 0.377 0.374
3.5 0.341 0.33% 0.384 0.341
4.0 0.314 0.312 0.318  0.313

Table 11. The stress intensity factor atio kws for a titanium spherical shell (N, =0, M;; » 0)
a/h = 10 a/h =5 a/h = 2 a/h =]

Yoo B/Er B/ E/Ep BB Ei/Ep E/Ex E\/Es Ey/Ep
0.725 1,380 0.725 1.380 0.725 1.380 0.725 1.380

0.0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0,000
0.25 0.006 0.007 0.006 0,007 0.007 0.008 0.009 0.010
0.50 0.015 0.017 0.016 0.018 0.019 0.021 0.022 0.024
0.75 0.025 0.028 0.027 0.029 0.031 0.034 0.035 0.039
1.0 0.034 0.037 0.036 0.040 0.042 0.045 0.047 0.051
1.5 0.049 0.054 0.052 0.057 0.059 0.064

2.0 0.061 0.066 0.064 0.069 0.07% 0.076

2.5 0.06¢ 0.075 0.072 0.078

3.0 0.074 0.081 0.078 0.084

3.5 0.078 0.085 0.082 0.088

4.0 0.081 0.088 0.084 0.091

SS Vol. 15, No. 12—B
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Table 12. The stress intensity factor ratio kmm for a graphite spherical shell (N, # 0, M,, = 0)

a/h = 10 a/h =5 a/h = 2 a/h =1
A9 E]/Ez- Ey/Ey® EI/EZ' E1/E2- E1/E2- E)/Ep= E]/Ez- EI/EZ'
0.037 26.667 0.037 26.667 0.037 26.667 0.037 26.667
0.0 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.25 1.006 1.073 1.006 1.073 1.006 1.074 1.006 1.075
0.50 1.024 1.250 1.024 1.251 1.024 1.255 1.026 1.267
0.75 1.051 1.491 1,052 1.493 1.053 1.504 1.059 1.540
1.0 1.089 1.767 1.090 1.771 1.095 1.794 1.108 1.863
1.5 1.190 2.377 1.193 2.387 1.207 2.445
2.0 1.318 3.030 1.324 3.050 1.354 3.16%
2.5 1.470 3.713 1.480 3.748
3.0 1.643 4.423 1.658 4.484
3.5 1.836 5.164 1.857 5.271
4.0 2.044 5.948 2.075 6.145

Table 13. The stress intensity factor ratio ks for a graphite spherical shell (N, # 0, M;, =0)

a/h =10 a/h =5 a/h = 2 a/h =1
X E)/Ey= Ey/Ey= Ey/E,= E1/E2= Ey/Ey= Ey/Ey= Ey/Ey= Ey/E,=
0.037 26.667 0.037 26.667 0.037 26.667 0.037 26.667
0.0 0.000 0.000 0:600 0.000 0.600 0.000 0.000 0.000
0.25 0.012 0.037 0.012 0.037 0.013 0.038 0.014  0.040
0.50 0.033 0.088 0.033 0.087 0.035 0.087 0.038 0.089
0.75 0.055 0.133 0.056 0.130 0.058 0.126 0.06} 0.125
1.0 0.076 0.165 0.076 0.158 0.077 0.147 0.079 0.14
1.5 0.104 0.172 0.101 0.151 0.096 0.114
2.0 0.1 0.084 0.103 0.041 0.091 -0.035
2.5 0.099 -0.108 0.085 -0.179
3.0 0.069 -0.404 0.048 -0.510
3.5 0.022 -0.804 -0.006 -0.957
4.0 -0.041 -1.314 -0.074 -1.538

Tabde 14. The stress inm?sity factor ratio ks for a graphite spherical shell (N, =0, M), #0)

a/h = 10 afh =5 ath = 2 a/h =1

E)/Ep= E/Ey E1/Ep E/Ep El/E E/Es /B Ey/Ey
0.037 26.667 0.037 26.667 0.037 26.667 0.037 26.667

>
(=]

0.0 0.615 0.599 0.635 0.611 0.686 0.63% 0.751 0.677
0.25 0.611 0.593 0.631 0.604 0.680 0.631 0.744 0.666
0.50 0.600 0.577 0.618 0.587 0.664 0.611 0.723 0.642
0.75 0.584 0.556 0.600 0.564 0.640 0.585 0.695 0.612
1.0 0.564 0.533 0.578 0.539 0.613 0.556 0.664 0.580
1.5 0.518 0.486 0.527 0.490 0.555 0.501

2.0 0.472 0.442 0.478 0.443 0.504 0.451

2.5 0.430 0.402 0.435 0.402

3.0 0.394 0.367 0.399 0.367

3.5 0.364 0.336 0.369 0.335

4.0 0.339 0.309 0.346 0.308

Table 15. The stress intensity factor ratio ks for a graphite sphericai shell (Ny; =0, My # 0)

a/h = 10 a/h = 5 a/h = 2 a/h =1
X E1/Ez= E]/Ezs E1/EZ' El/EZ' E1/E2~ E]/Ez- E]/EZ- El/EZ‘
0.037 26.667 0.037 26.667 0.037 26.667 0.037 26.667
0.0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.25 0.003 0.008 0.003 0.008 0.004 0.010 0.004 0.011
0.50 0.007 0.019 0.008 0.021 0.010 0.024 0.012 0.027
0.75 0.013 0.032 0.014 0.034 0.017 0.038 0.020 0.043
1.0 0.018 0.043 0.019 0.046 0.023 0.051 0.027 0.057
1.5 0.027 0.063 0.029 0.066 0.033 0.072
2.0 0.033 0.077 0.035 0.080 0.040 0.087
2.5 0.038 0.087 0.040 0.090
3.0 0.041 0.094 0.043 0.098
3.5 0.043 0.099 0.045 0.103
4.0 0.044 0.103 0.046 0.108
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Fig. 3. The membrane component of the stress intensity factor ratio ke, in an isotropic and in a specially
orthotropic spherical (titanium) shell; afh =S5, A¢*= 12(1-»")a*{R%h?, v = /3 for isotropic shell, v =
V(1) for orthotropic shell.

5 E,/e, = 26667

(Isctropic v=1/3)

3|~ E,/E; = 0037

| 1
4 5

Xo

Fig. 4. The membrane component of the stress intensity factor ratio ke in an isotropic and in a specially
orthotropic spherical (graphite) shell; alh =S5, Ao*= 12(1-v})a*/R*h?, v=1/3 for isotropic shell, »=
V{(»,1,) for orthotropic shell.
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APPENDIX A
The dimensionless quantities
x=715{-'. y=Ve -)%. Z=—a_" (A.D)
eevel pad B ¥
(A.2)
Bo=VeB, BBy $=ot
11 5 v V(-‘ 2y m
_ou _can o
Tee “cEy (% E 1) Ty E (A.3)
N, =E N, = Tk N = hE (A.4)
- My _ M - M
Mu -Z"E!E- M\'\ —T-‘_E—‘ ™ ‘ﬁ (A.5)
- VI - \/CV:
V. =VehB' V., =B (A.6)
2.4 4
4 _,pnea K _.n_ 4a
At =121 u)m, A= 12(1 v)m.
& _ 2 a' a_ _2 a3 ___E_
Ap=12(1-» )h'Riz' At=1200 -y )P' K= (A7)



